Balancing chemical equations
Author(s) -
Ober Slotterbeck
Publication year - 1932
Publication title -
journal of chemical education
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.499
H-Index - 84
eISSN - 1938-1328
pISSN - 0021-9584
DOI - 10.1021/ed009p751
Subject(s) - citation , icon , altmetrics , computer science , social media , information retrieval , library science , world wide web , programming language
Chemical equations do not come already balanced. This must be done before the equation can be used in a chemically meaningful way. All chemical calculations to come must be done with a balanced equation. A balanced equation has equal numbers of each type of atom on each side of the equation. The Law of Conservation of Mass is the rationale for balancing a chemical equation. The law was discovered by Antoine Laurent Lavoisier (1743-94) and this is his formulation of it, translated into English in 1790 from the Traité élémentaire de Chimie (which was published in 1789): "We may lay it down as an incontestible axiom, that, in all the operations of art and nature, nothing is created; an equal quantity of matter exists both before and after the experiment; the quality and quantity of the elements remain precisely the same; and nothing takes place beyond changes and modifications in the combination of these elements." A less wordy way to say it might be: "Matter is neither created nor destroyed." Therefore, we must finish our chemical reaction with as many atoms of each element as when we started.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom