Performance of CASPT2 and DFT for Relative Spin-State Energetics of Heme Models
Author(s) -
Steven Vancoillie,
Hailiang Zhao,
Mariusz Radoń,
Kristine Pierloot
Publication year - 2010
Publication title -
journal of chemical theory and computation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.001
H-Index - 185
eISSN - 1549-9626
pISSN - 1549-9618
DOI - 10.1021/ct900567c
Subject(s) - energetics , heme , spin (aerodynamics) , spin states , state (computer science) , chemical physics , chemistry , computer science , physics , atomic physics , thermodynamics , algorithm , biochemistry , enzyme
The accuracy of the relative spin-state energetics of three small Fe(II) or Fe(III) heme models from multiconfigurational perturbation theory (CASPT2) and density functional theory with selected functionals (including the recently developed M06 and M06-L functionals) was assessed by comparing with recently available coupled cluster results. While the CASPT2 calculations of spin-state energetics were found to be very accurate for the studied Fe(III) complexes (including FeP(SH), a model of the active site of cytochrome P450 in its resting state), there is a strong indication of a systematic error (around 5 kcal/mol) in favor of the high-spin state for the studied Fe(II) complexes (including FeP(Im), a model of the active site of myoglobin). A larger overstabilization of the high-spin states was observed for the M06 and M06-L functionals, up to 22 and 11 kcal/mol, respectively. None of the tested density functionals consistently provides a better accuracy than CASPT2 for all model complexes.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom