z-logo
open-access-imgOpen Access
Development of OPLS-AA Force Field Parameters for 68 Unique Ionic Liquids
Author(s) -
Somisetti V. Sambasivarao,
Orlando Acevedo
Publication year - 2009
Publication title -
journal of chemical theory and computation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.001
H-Index - 185
eISSN - 1549-9626
pISSN - 1549-9618
DOI - 10.1021/ct900009a
Subject(s) - ionic liquid , hexafluorophosphate , force field (fiction) , chemistry , alkyl , thermodynamics , ab initio , opls , vaporization , molecular dynamics , computational chemistry , ionic bonding , transferability , enthalpy of vaporization , enthalpy , ion , organic chemistry , physics , water model , statistics , logit , mathematics , quantum mechanics , catalysis
OPLS-AA force field parameters have been developed and validated for use in the simulation of 68 unique combinations of room temperature ionic liquids featuring 1-alkyl-3-methylimidazolium [RMIM] (R = Me, Et, Bu, Hex, Oct), N-alkylpyridinium [RPyr], and choline cations, along with Cl(-), PF6(-), BF4(-), NO3(-), AlCl4(-), Al2Cl7(-), TfO(-), saccharinate, and acesulfamate anions. The new parameters were fit to conformational profiles from gas-phase ab initio calculations at the LMP2/cc-pVTZ(-f)//HF/6-31G(d) theory level and compared to experimental condensed-phase structural and thermodynamic data. Monte Carlo simulations of the ionic liquids gave relative deviations from experimental densities of ca. 1-3% at 25 °C for most combinations and also yielded close agreement over a temperature range of 5 to 90 °C. Predicted heats of vaporization compared well with available experimental data and estimates. Transferability of the new parameters to multiple alkyl side-chain lengths for [RMIM] and [RPyr] was determined to give excellent agreement with charges and torsion potentials developed specific to desired alkyl lengths in 35 separate ionic liquid simulations. As further validation of the newly developed parameters, the Kemp elimination reaction of benzisoxazole via piperidine was computed in 1-butyl-3-methylimidazolium hexafluorophosphate [BMIM][PF6] using mixed quantum and molecular mechanics (QM/MM) simulations and was found to give close agreement with the experimental free energy of activation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here