z-logo
open-access-imgOpen Access
Electronic Properties of Zigzag Graphene Nanoribbons Studied by TAO-DFT
Author(s) -
Chun-Shian Wu,
JengDa Chai
Publication year - 2015
Publication title -
journal of chemical theory and computation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.001
H-Index - 185
eISSN - 1549-9626
pISSN - 1549-9618
DOI - 10.1021/ct500999m
Subject(s) - zigzag , density functional theory , graphene nanoribbons , materials science , electronic structure , atomic orbital , graphene , singlet state , ab initio , molecular orbital , condensed matter physics , electron , physics , atomic physics , quantum mechanics , nanotechnology , molecule , mathematics , geometry , excited state
Accurate prediction of the electronic properties of zigzag graphene nanoribbons (ZGNRs) has been very challenging for conventional electronic structure methods due to the presence of strong static correlation effects. To meet the challenge, we study the singlet-triplet energy gaps, vertical ionization potentials, vertical electron affinities, fundamental gaps, and symmetrized von Neumann entropy (i.e., a measure of polyradical character) of hydrogen-terminated ZGNRs with different widths and lengths using our recently developed thermally-assistedoccupation density functional theory (TAO-DFT) [Chai, J.-D. J. Chem. Phys. 2012, 136, 154104], a very efficient method for the study of large strongly correlated systems. Our results are in good agreement with the available experimental and high-accuracy ab initio data. The ground states of ZGNRs are shown to be singlets for all the widths and lengths investigated. With the increase of ribbon length, the singlet-triplet energy gaps, vertical ionization potentials, and fundamental gaps decrease monotonically, while the vertical electron affinities and symmetrized von Neumann entropy increase monotonically. On the basis of the calculated orbitals and their occupation numbers, the longer ZGNRs are shown to possess increasing polyradical character in their ground states, where the active orbitals are mainly localized at the zigzag edges.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom