z-logo
open-access-imgOpen Access
Diffusion Monte Carlo Study of Para-Diiodobenzene Polymorphism Revisited
Author(s) -
Kenta Hongo,
Mark A. Watson,
Toshiaki Iitaka,
Alán AspuruGuzik,
Ryo Maezono
Publication year - 2015
Publication title -
journal of chemical theory and computation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.001
H-Index - 185
eISSN - 1549-9626
pISSN - 1549-9618
DOI - 10.1021/ct500401p
Subject(s) - monte carlo method , statistical physics , kinetic monte carlo , density functional theory , convergence (economics) , diffusion monte carlo , diffusion , stability (learning theory) , coulomb , computer science , physics , chemistry , computational chemistry , mathematics , monte carlo molecular modeling , thermodynamics , quantum mechanics , statistics , markov chain monte carlo , machine learning , economics , economic growth , electron
We revisit our investigation of the diffusion Monte Carlo (DMC) simulation of para-diiodobenzene (p-DIB) molecular crystal polymorphism. [See J. Phys. Chem. Lett. 2010, 1, 1789-1794.] We perform, for the first time, a rigorous study of finite-size effects and choice of nodal surface on the prediction of polymorph stability in molecular crystals using fixed-node DMC. Our calculations are the largest that are currently feasible using the resources of the K-computer and provide insights into the formidable challenge of predicting such properties from first principles. In particular, we show that finite-size effects can influence the trial nodal surface of a small (1 × 1 × 1) simulation cell considerably. Therefore, we repeated our DMC simulations with a 1 × 3 × 3 simulation cell, which is the largest such calculation to date. We used a density functional theory (DFT) nodal surface generated with the PBE functional, and we accumulated statistical samples with ∼6.4 × 10(5) core hours for each polymorph. Our final results predict a polymorph stability that is consistent with experiment, but they also indicate that the results in our previous paper were somewhat fortuitous. We analyze the finite-size errors using model periodic Coulomb (MPC) interactions and kinetic energy corrections, according to the CCMH scheme of Chiesa, Ceperley, Martin, and Holzmann. We investigate the dependence of the finite-size errors on different aspect ratios of the simulation cell (k-mesh convergence) in order to understand how to choose an appropriate ratio for the DMC calculations. Even in the most expensive simulations currently possible, we show that the finite size errors in the DMC total energies are much larger than the energy difference between the two polymorphs, although error cancellation means that the polymorph prediction is accurate. Finally, we found that the T-move scheme is essential for these massive DMC simulations in order to circumvent population explosions and large time-step biases.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom