z-logo
open-access-imgOpen Access
Mechanisms of Differential Allosteric Modulation in Homologous Proteins: Insights from the Analysis of Internal Dynamics and Energetics of PDZ Domains
Author(s) -
Giulia Morra,
Alessandro Gei,
Giorgio Colombo
Publication year - 2014
Publication title -
journal of chemical theory and computation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.001
H-Index - 185
eISSN - 1549-9626
pISSN - 1549-9618
DOI - 10.1021/ct500326g
Subject(s) - allosteric regulation , pdz domain , biophysics , chemistry , molecular dynamics , energetics , protein dynamics , protein structure , cooperativity , crystallography , biology , computational chemistry , receptor , biochemistry , ecology
Allostery is a general phenomenon in proteins whereby a perturbation at one site reverberates into a functional change at another one, through modulation of its conformational dynamics. Herein, we address the problem of how the molecular signal encoded by a ligand is differentially transmitted through the structures of two homologous PDZ proteins: PDZ2, which responds to binding with structural and dynamical changes in regions distal from the ligand site, and PDZ3, which is characterized by less-intense dynamical variations. We use novel methods of analysis of MD simulations in the unbound and bound states to investigate the determinants of the differential allosteric behavior of the two proteins. The analysis of the correlations between the redistribution of stabilization energy and local fluctuation patterns highlights the nucleus of residues responsible for the stabilization of the 3D fold, the stability core, as the substructure that defines the difference in the allosteric response: in PDZ2, it undergoes a consistent dynamic and energetic reorganization, whereas in PDZ3, it remains largely unperturbed. Specifically, we observe for PDZ2 a significant anticorrelation between the motions of distal loops and residues of the stability core and differences in the correlation patterns between the bound and unbound states. Such variation is not observed in PDZ3, indicating that its energetics and internal dynamics are less affected by the presence/absence of the ligand. Finally, we propose a model with a direct link between the modulation of the structural, energetic and dynamic properties of a protein, and its allosteric response to a perturbation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom