z-logo
open-access-imgOpen Access
Conical Intersection and Potential Energy Surface Features of a Model Retinal Chromophore: Comparison of EOM-CC and Multireference Methods
Author(s) -
Samer Gozem,
Anna I. Krylov,
Massimo Olivucci
Publication year - 2012
Publication title -
journal of chemical theory and computation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.001
H-Index - 185
eISSN - 1549-9626
pISSN - 1549-9618
DOI - 10.1021/ct300759z
Subject(s) - conical intersection , chromophore , coupled cluster , potential energy surface , potential energy , excited state , multireference configuration interaction , electronic correlation , wave function , diradical , physics , ground state , configuration interaction , ab initio , atomic physics , chemistry , electron , quantum mechanics , molecule , singlet state
This work investigates the performance of equation-of-motion coupled-cluster (EOM-CC) methods for describing the changes in the potential energy surfaces of the penta-2,4-dieniminium cation, a reduced model of the retinal chromophore of visual pigments, due to dynamical electron correlation effects. The ground-state wave function of this model includes charge-transfer and diradical configurations whose weights vary along different displacements and are rapidly changing at the conical intersection between the ground and the first excited states, making the shape of the potential energy surface sensitive to a balanced description of nondynamical and dynamical correlation. Recently, variational (MRCISD) and perturbative (MRPT2) approaches for including dynamical correlation in CASSCF-based calculations were tested along three representative ground state paths. Here, we use the same three paths to compare the performance of single-reference EOM-CC methods against MRCISD and MRCISD+Q. We find that the spin-flip variant of EOM-CCSD with perturbative inclusion of triple excitations (dT or fT) produces potential energy profiles of the two lowest electronic states in quantitative agreement with MRCISD+Q (our highest-quality reference method). The nonparallelity errors and differences in vertical energy differences of the two surfaces along these scans are less than 1.4 kcal/mol (EOM-SF-CCSD(dT) versus MRCISD+Q). For comparison, the largest error of MRCISD versus MRCISD+Q is 1.7 kcal/mol. Our results show that the EOM-CC methods provide an alternative to multireference approaches and may be used to study photochemical systems like the one used in this work.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom