Comparison of Molecular Dynamics with Classical Density Functional and Poisson–Boltzmann Theories of the Electric Double Layer in Nanochannels
Author(s) -
Jonathan Lee,
R. H. Nilson,
Jeremy Alan Templeton,
Stewart K. Griffiths,
Andy Kung,
Bryan M. Wong
Publication year - 2012
Publication title -
journal of chemical theory and computation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.001
H-Index - 185
eISSN - 1549-9626
pISSN - 1549-9618
DOI - 10.1021/ct3001156
Subject(s) - molecular dynamics , density functional theory , ion , poisson–boltzmann equation , debye length , monte carlo method , charge density , charge (physics) , molecular physics , chemistry , chemical physics , physics , statistical physics , computational chemistry , quantum mechanics , statistics , mathematics
Comparisons are made among Molecular Dynamics (MD), Classical Density Functional Theory (c-DFT), and Poisson-Boltzmann (PB) modeling of the electric double layer (EDL) for the nonprimitive three component model (3CM) in which the two ion species and solvent molecules are all of finite size. Unlike previous comparisons between c-DFT and Monte Carlo (MC), the present 3CM incorporates Lennard-Jones interactions rather than hard-sphere and hard-wall repulsions. c-DFT and MD results are compared over normalized surface charges ranging from 0.2 to 1.75 and bulk ion concentrations from 10 mM to 1 M. Agreement between the two, assessed by electric surface potential and ion density profiles, is found to be quite good. Wall potentials predicted by PB begin to depart significantly from c-DFT and MD for charge densities exceeding 0.3. Successive layers are observed to charge in a sequential manner such that the solvent becomes fully excluded from each layer before the onset of the next layer. Ultimately, this layer filling phenomenon results in fluid structures, Debye lengths, and electric surface potentials vastly different from the classical PB predictions.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom