How Can Hydrophobic Association Be Enthalpy Driven?
Author(s) -
Piotr Setny,
Riccardo Baron,
J. Andrew McCammon
Publication year - 2010
Publication title -
journal of chemical theory and computation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.001
H-Index - 185
eISSN - 1549-9626
pISSN - 1549-9618
DOI - 10.1021/ct1003077
Subject(s) - enthalpy , hydrophobic effect , thermodynamics , association (psychology) , chemistry , solvent , entropy (arrow of time) , potential of mean force , molecular dynamics , chemical physics , statistical physics , computational chemistry , physics , organic chemistry , philosophy , epistemology
Hydrophobic association is often recognized as being driven by favorable entropic contributions. Here, using explicit solvent molecular dynamics simulations we investigate binding in a model hydrophobic receptor-ligand system which appears, instead, to be driven by enthalpy and opposed by entropy. We use the temperature dependence of the potential of mean force to analyze the thermodynamic contributions along the association coordinate. Relating such contributions to the ongoing changes in system hydration allows us to demonstrate that the overall binding thermodynamics is determined by the expulsion of disorganized water from the receptor cavity. Our model study sheds light on the solvent-induced driving forces for receptor-ligand association of general, transferable relevance for biological systems with poorly hydrated binding sites.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom