Enzymatic C(sp3)-H Amination: P450-Catalyzed Conversion of Carbonazidates into Oxazolidinones
Author(s) -
Ritesh Singh,
Joshua N. Kolev,
Philip Sutera,
Rudi Fasan
Publication year - 2015
Publication title -
acs catalysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 4.898
H-Index - 198
ISSN - 2155-5435
DOI - 10.1021/cs5018612
Subject(s) - nitrene , chemistry , amination , reactivity (psychology) , allylic rearrangement , context (archaeology) , stereochemistry , catalysis , substrate (aquarium) , hydrogen atom abstraction , intramolecular force , combinatorial chemistry , organic chemistry , radical , medicine , paleontology , oceanography , alternative medicine , pathology , biology , geology
Cytochrome P450 enzymes can effectively promote the activation and cyclization of carbonazidate substrates to yield oxazolidinones via an intramolecular nitrene C-H insertion reaction. Investigation of the substrate scope shows that while benzylic/allylic C-H bonds are most readily aminated by these biocatalysts, stronger, secondary C-H bonds are also accessible to functionalization. Leveraging this "non-native" reactivity and assisted by fingerprint-based predictions, improved active-site variants of the bacterial P450 CYP102A1 could be identified to mediate the aminofunctionalization of two terpene natural products with high regio- and stereoselectivity. Mechanistic studies and KIE experiments show that the C-H activation step in these reactions is rate-limiting and proceeds in a stepwise manner, namely, via hydrogen atom abstraction followed by radical recombination. This study expands the reactivity scope of P450-based catalysts in the context of nitrene transfer transformations and provides first-time insights into the mechanism of P450-catalyzed C-H amination reactions.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom