z-logo
open-access-imgOpen Access
Rationally Designed Peptoids Modulate Aggregation of Amyloid-Beta 40
Author(s) -
John Turner,
Tammy LutzRechtin,
Kelly A. Moore,
L.S. Rogers,
Omkar Bhave,
Melissa A. Moss,
Shan L. Servoss
Publication year - 2014
Publication title -
acs chemical neuroscience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.158
H-Index - 69
ISSN - 1948-7193
DOI - 10.1021/cn400221u
Subject(s) - amyloid (mycology) , beta (programming language) , amyloid beta , chemistry , neuroscience , computational biology , computer science , biochemistry , biology , peptide , inorganic chemistry , programming language
Alzheimer's disease (AD) is the most common form of dementia and the sixth leading cause of death in the United States. Plaques composed of aggregated amyloid-beta protein (Aβ) accumulate between the neural cells in the brain and are associated with dementia and cellular death. Many strategies have been investigated to prevent Aβ self-assembly into disease-associated β-sheet amyloid aggregates; however, a promising therapeutic has not yet been identified. In this study, a peptoid-based mimic of the peptide KLVFF (residues 16-20 of Aβ) was tested for its ability to modulate Aβ aggregation. Peptoid JPT1 includes chiral, aromatic side chains to induce formation of a stable helical secondary structure that allows for greater interaction between the aromatic side chains and the cross β-sheet of Aβ. JPT1 was found to modulate Aβ40 aggregation, specifically decreasing lag time to β-sheet aggregate formation as well as the total number of fibrillar, β-sheet structured aggregates formed. These results suggest that peptoids may be able to limit the formation of Aβ aggregates that are associated with AD.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom