z-logo
open-access-imgOpen Access
Synthesis, Structures, and Magnetic Properties of Rare-Earth Cobalt Arsenides, RCo2As2 (R = La, Ce, Pr, Nd)
Author(s) -
Corey M. Thompson,
Xiaoyan Tan,
Kirill Kovnir,
V. Ovidiu Garlea,
A.A. Gippius,
Alexander Yaroslavtsev,
А. П. Менушенков,
Roman Chernikov,
N. Büttgen,
Wolfgang Krätschmer,
Yan V. Zubavichus,
Michael Shatruk
Publication year - 2014
Publication title -
chemistry of materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.741
H-Index - 375
eISSN - 1520-5002
pISSN - 0897-4756
DOI - 10.1021/cm501522v
Subject(s) - ferrimagnetism , magnetism , magnetic moment , isostructural , tetragonal crystal system , crystallography , materials science , neutron diffraction , ferromagnetism , fermi level , crystal structure , condensed matter physics , ground state , paramagnetism , magnetization , chemistry , physics , atomic physics , quantum mechanics , magnetic field , electron
Four rare-earth cobalt arsenides, $RCo_{2}As_{2}$ (R = La, Ce, Pr, Nd), were obtained by reactions of constituent elements in molten Bi. The use of Bi flux also allowed the growth of representative single crystals. All compounds are isostructural and belong to the $ThCr_{2}Si_{2}$ type (space group I4/mmm). The formation of Co vacancies is observed in all structures, while the structures of La- and Ce-containing compounds also show incorporation of minor Bi defects next to the R crystallographic site. Correspondingly, the general formula of these materials can be written as $R_{1–x}Bi_{x}Co_{2−\delta}As_{2}$, with $x/\delta$ = 0.03/0.1, 0.05/0.15, 0/0.2, and 0/0.3 for R = La, Ce, Pr, and Nd, respectively. All compounds exhibit high-temperature ferromagnetic ordering of Co magnetic moments in the range 60–200 K. Electronic band structure calculations revealed a high peak in the density of states at the Fermi level, thus supporting the itinerant nature of magnetism in the Co sublattice. The magnetic ordering in the lanthanide sublattice takes place at lower temperatures, with the R moments aligning antiparallel to the Co moments to give a ferrimagnetic ground state. The measurements on oriented single crystals demonstrated significant magnetic anisotropy in the ferrimagnetic state, with the preferred moment alignment along the $\mathit{c}$ axis of the tetragonal lattice. Neutron powder diffraction failed to reveal the structure of magnetically ordered states but confirmed the presence of Co vacancies. X-ray absorption near-edge structure spectroscopy on $Ce_{1.95}Bi_{0.05}Co_{1.85}As_{2}$ showed the average oxidation state of Ce to be +3.06. Solid state NMR spectroscopy revealed a substantially reduced hyperfine field on the Co atoms in the vicinity of Bi defects

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom