z-logo
open-access-imgOpen Access
Surfactant-Directed Synthesis of Ternary Nanostructures: Nanocubes, Polyhedrons, Octahedrons, and Nanowires of PtNiFe. Their Shape-Dependent Oxygen Reduction Activity
Author(s) -
ShangWei Chou,
JingJong Shyue,
Chia-Hua Chien,
ChiaChun Chen,
Yang-Yuan Chen,
PiTai Chou
Publication year - 2012
Publication title -
chemistry of materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.741
H-Index - 375
eISSN - 1520-5002
pISSN - 0897-4756
DOI - 10.1021/cm301039a
Subject(s) - oleylamine , nanowire , ternary operation , nanostructure , materials science , nanotechnology , electrocatalyst , nanocrystal , alloy , oxygen reduction , oxygen reduction reaction , pulmonary surfactant , catalysis , chemical engineering , chemistry , electrode , electrochemistry , metallurgy , organic chemistry , computer science , engineering , programming language
We report a rational method for preparation of ternary alloy (PtNiFe) nanocrystals with various shapes. PtNiFe nanocubes, polyhedrons, and octahedrons are prepared via fine-tuning the alloy compositions and surfactants, so that the crystal facet–surfactant bindings on the growth seed can be well controlled. Nanowires grow in the cylindrical template built via high concentrations of oleylamine. In the electrocatalysis examination, it appears that the oxygen reduction reaction (ORR) activities of all PtNiFe nanostructures outperform that of commercial Pt catalyst in the electrolyte of HClO4 or H2SO4. In HClO4, the order of ORR activity is as follows: octahedrons ≈ nanowires > polyhedrons > nanocubes. PtNiFe nanostructures enclosed by a (111) plane, such as octahedrons and nanowires, give the highest ORR activities. Conversely, in H2SO4, the ORR activity of PtNiFe nanocubes enclosed by {100} facets is the highest among these nanostructures. The ORR activity increases in the order of nanowires ≈ octahedrons <...

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom