z-logo
open-access-imgOpen Access
Wholly Aromatic Ether-imides. Potential Materials for n-Type Semiconductors
Author(s) -
Theo J. Dingemans,
Stephen J. Picken,
N. Sanjeeva Murthy,
P.R. Mark,
T. L. Stclair,
Edward T. Samulski
Publication year - 2004
Publication title -
chemistry of materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.741
H-Index - 375
eISSN - 1520-5002
pISSN - 0897-4756
DOI - 10.1021/cm021723f
Subject(s) - ether , semiconductor , organic chemistry , materials science , chemistry , optoelectronics
We report on the synthesis and characterization of a series of low molar mass, high aspect ratio ether-imide compounds. All ether-imides were obtained by terminating the appropriate dianhydride, that is, pyromellitic dianhydride (PMDA), 1,4,5,8-naphthalenetetra-carboxylic dianhydride (NDA), 3,3‘,4,4‘-biphenyltetracarboxylic dianhydride (BPDA), and 3,3‘,4,4‘-oxydiphthalic dianhydride (ODPA), with three flexible aryl-ether tails of different chain lengths. Increasing the number of meta-substituted aryl-ether units reduces the melt transition temperatures and at the same time increases the solubility of the ether-imides. When the flexibility of the dianhydride moiety increases, the thermal behavior of the compounds becomes significantly more complex:  The BPDA- and ODPA-based compounds form glasses and exhibit multiple crystal phases. Most compounds form isotropic melts upon heating; however, 2,7-bis(-4-phenoxy-phenyl)-benzo[lmn][3,8]phenanthroline-1,3,6,8-tetraone (NDA-n0) displays a smectic A (SA)-type tex...

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom