Computational Structure Activity Relationship Studies on the CD1d/Glycolipid/TCR Complex Using AMBER and AUTODOCK
Author(s) -
Janos Nadas,
Chenglong Li,
Peng George Wang
Publication year - 2009
Publication title -
journal of chemical information and modeling
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.24
H-Index - 160
eISSN - 1549-960X
pISSN - 1549-9596
DOI - 10.1021/ci8002705
Subject(s) - cd1d , autodock , glycolipid , t cell receptor , docking (animal) , chemistry , ligand (biochemistry) , stereochemistry , receptor , biochemistry , computational biology , biology , t cell , immunology , in silico , immune system , medicine , nursing , gene
The human CD1d protein presents a wide range of lipids to the TCR of invariant natural killer T cells (iNKT). Alpha-GalCer is one of the most potent iNKT stimulatory ligands presented by CD1d. The lipid portion of this ligand has been extensively investigated over the course of the past few years; however, the sugar portion of the ligand has received minimal attention. The following research focuses on computationally analyzing the recently crystallized CD1d/alpha-GalCer/TCR tertiary complex by molecular dynamics simulations using AMBER along with studying the structure activity relationship of the sugar headgroup also by simulation and docking using Autodock for a variety of alpha-GalCer analogs. The results show that the crystal structure is stable under simulation making it an accurate representation of the CD1d/alpha-GalCer/TCR complex and that modifications to the C2' and C3' positions of the sugar are not tolerated by the tertiary complex, whereas modifications to the C4' position are tolerated.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom