z-logo
open-access-imgOpen Access
Structural and Energetic Analysis of 2-Aminobenzimidazole Inhibitors in Complex with the Hepatitis C Virus IRES RNA Using Molecular Dynamics Simulations
Author(s) -
Niel M. Henriksen,
Hamed S. Hayatshahi,
Darrell R. Davis,
Thomas E. Cheatham
Publication year - 2014
Publication title -
journal of chemical information and modeling
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.24
H-Index - 160
eISSN - 1549-960X
pISSN - 1549-9596
DOI - 10.1021/ci500132c
Subject(s) - molecular dynamics , rna , internal ribosome entry site , chemistry , docking (animal) , ribosome , computational chemistry , biophysics , biochemistry , biology , gene , medicine , nursing
Despite the many biological functions of RNA, very few drugs have been designed or found to target RNA. Here we report the results of molecular dynamics (MD) simulations and binding energy analyses on hepatitis C virus internal ribosome entry site (IRES) RNA in complex with highly charged 2-aminobenzimidazole inhibitors. Initial coordinates were taken from NMR and crystallography studies that had yielded different binding modes. During MD simulations, the RNA-inhibitor complex is stable in the crystal conformation but not in the NMR conformation. Additionally, we found that existing and standard MD trajectory postprocessing free energy methods, such as the MM-GBSA and MM-PBSA approaches available in AMBER, seem unsuitable to properly rank the binding energies of complexes between highly charged molecules. A better correlation with the experimental data was found using a rather simple binding enthalpy calculation based on the explicitly solvated potential energies. In anticipation of further growth in the use of small molecules to target RNA, we include results addressing the impact of charge assignment on docking, the structural role of magnesium in the IRES-inhibitor complex, the entropic contribution to binding energy, and simulations of a plausible scaffold design for new inhibitors.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom