Assessing hERG Pore Models As Templates for Drug Docking Using Published Experimental Constraints: The Inactivated State in the Context of Drug Block
Author(s) -
Christopher E. Dempsey,
Dominic Wright,
Charlotte K. Colenso,
Richard B. Sessions,
Jules C. Hancox
Publication year - 2014
Publication title -
journal of chemical information and modeling
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.24
H-Index - 160
eISSN - 1549-960X
pISSN - 1549-9596
DOI - 10.1021/ci400707h
Subject(s) - herg , docking (animal) , homology modeling , kcsa potassium channel , chemistry , context (archaeology) , computational biology , drug , binding site , biophysics , drug discovery , stereochemistry , pharmacology , potassium channel , biochemistry , ion channel , biology , enzyme , medicine , paleontology , receptor , nursing
Many structurally and therapeutically diverse drugs interact with the human heart K+ channel hERG by binding within the K+ permeation pathway of the open channel, leading to drug-induced 'long QT syndrome'. Drug binding to hERG is often stabilized by inactivation gating. In the absence of a crystal structure, hERG pore homology models have been used to characterize drug interactions. Here we assess potentially inactivated states of the bacterial K+ channel, KcsA, as templates for inactivated state hERG pore models in the context of drug binding using computational docking. Although Flexidock and GOLD docking produced low energy score poses in the models tested, each method selected a MthK K+ channel-based model over models based on the putative inactivated state KcsA structures for each of the 9 drugs tested. The variety of docking poses found indicates that an optimal arrangement for drug binding of aromatic side chains in the hERG pore can be achieved in several different configurations. This plasticity of the drug "binding site" is likely to be a feature of the hERG inactivated state. The results demonstrate that experimental data on specific drug interactions can be used as structural constraints to assess and refine hERG homology models.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom