Ligand and Structure-Based Classification Models for Prediction of P-Glycoprotein Inhibitors
Author(s) -
Freya Klepsch,
Vasanthanathan Poongavanam,
Gerhard F. Ecker
Publication year - 2013
Publication title -
journal of chemical information and modeling
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.24
H-Index - 160
eISSN - 1549-960X
pISSN - 1549-9596
DOI - 10.1021/ci400289j
Subject(s) - random forest , support vector machine , in silico , adme , quantitative structure–activity relationship , artificial intelligence , virtual screening , docking (animal) , computational biology , machine learning , computer science , test set , binary classification , drug discovery , bioinformatics , chemistry , drug , biology , medicine , pharmacology , biochemistry , nursing , gene
The ABC transporter P-glycoprotein (P-gp) actively transports a wide range of drugs and toxins out of cells, and is therefore related to multidrug resistance and the ADME profile of therapeutics. Thus, development of predictive in silico models for the identification of P-gp inhibitors is of great interest in the field of drug discovery and development. So far in silico P-gp inhibitor prediction was dominated by ligand-based approaches because of the lack of high-quality structural information about P-gp. The present study aims at comparing the P-gp inhibitor/noninhibitor classification performance obtained by docking into a homology model of P-gp, to supervised machine learning methods, such as Kappa nearest neighbor, support vector machine (SVM), random fores,t and binary QSAR, by using a large, structurally diverse data set. In addition, the applicability domain of the models was assessed using an algorithm based on Euclidean distance. Results show that random forest and SVM performed best for classification of P-gp inhibitors and noninhibitors, correctly predicting 73/75% of the external test set compounds. Classification based on the docking experiments using the scoring function ChemScore resulted in the correct prediction of 61% of the external test set. This demonstrates that ligand-based models currently remain the methods of choice for accurately predicting P-gp inhibitors. However, structure-based classification offers information about possible drug/protein interactions, which helps in understanding the molecular basis of ligand-transporter interaction and could therefore also support lead optimization.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom