z-logo
open-access-imgOpen Access
pharmACOphore: Multiple Flexible Ligand Alignment Based on Ant Colony Optimization
Author(s) -
Oliver Korb,
Peter Monecke,
Gerhard Heßler,
Thomas Stützle,
Thomas E. Exner
Publication year - 2010
Publication title -
journal of chemical information and modeling
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.24
H-Index - 160
eISSN - 1549-960X
pISSN - 1549-9596
DOI - 10.1021/ci1000218
Subject(s) - pharmacophore , ant , ant colony optimization algorithms , ligand (biochemistry) , computer science , artificial intelligence , computational biology , chemistry , stereochemistry , biology , biochemistry , receptor , computer network
The flexible superimposition of biologically active ligands is a crucial step in ligand-based drug design. Here we present pharmACOphore, a new approach for pairwise as well as multiple flexible alignment of ligands based on ant colony optimization (ACO; Dorigo, M.; Stützle, T. Ant Colony Optimization; MIT Press: Cambridge, MA, USA, 2004). An empirical scoring function is used, which describes ligand similarity by minimizing the distance of pharmacophoric features. The scoring function was parametrized on pairwise alignments of ligand sets for four proteins from diverse protein families (cyclooxygenase-2, cyclin-dependent kinase 2, factor Xa and peroxisome proliferator-activated receptor γ). The derived parameters were assessed with respect to pose prediction performance on the independent FlexS data set ( Lemmen, C.; Lengauer, T.; Klebe, G. J. Med. Chem. 1998, 41, 4502 - 4520) in exhausting pairwise alignments. Additionally, multiple flexible alignment experiments were carried out for the pharmacologically relevant targets trypsin and poly (ADP-ribose) polymerase (PARP). The results obtained show that the new procedure provides a robust and efficient way for the pairwise as well as multiple flexible alignment of small molecules.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom