z-logo
open-access-imgOpen Access
SENECA: A Platform-Independent, Distributed, and Parallel System for Computer-Assisted Structure Elucidation in Organic Chemistry
Author(s) -
Christoph Steinbeck
Publication year - 2001
Publication title -
journal of chemical information and computer sciences
Language(s) - English
Resource type - Journals
eISSN - 1520-5142
pISSN - 0095-2338
DOI - 10.1021/ci000407n
Subject(s) - intranet , computer science , java , the internet , client–server model , local area network , theoretical computer science , programming language , server , operating system
The program package SENECA for Computer-Assisted Structure Elucidation (CASE) of organic molecules is described. SENECA is written completely in the programming language Java and divided into a server, a client, and a gatekeeper part. While the client allows for input of spectroscopic information, the server part performs the actual structure elucidation by stochastically walking through constitution space while optimizing the molecule toward agreement with given spectral properties. The convergence is guided by simulated annealing. The gatekeeper administers a list of server processes, which can be retrieved by the client. The package is completely platform-independent and its server part can be distributed over the Internet or an intranet using a heterogeneous network of almost any number and type of computers, thus allowing for parallel CASE computations on ordinary networks, present in almost any institution.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom