On the Bimodal Effects of Silicic Acids on Calcite Growth
Author(s) -
Carlos M. Pina,
Casjen Merkel,
Guntram Jordan
Publication year - 2009
Publication title -
crystal growth and design
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.966
H-Index - 155
eISSN - 1528-7505
pISSN - 1528-7483
DOI - 10.1021/cg900333z
Subject(s) - calcite , nucleation , silicic acid , silicic , polymer , chemistry , crystal growth , polymerization , chemical engineering , materials science , crystallography , mineralogy , organic chemistry , geology , volcano , seismology , engineering
The effects of silicic acids on calcite growth are a model for the effects of partially polymerized additives on crystal growth. At alkaline pH, silicic acid polymers coexist with small mono- and oligomers. Atomic force microscopy (AFM) showed that large polymers promote two-dimensional nucleation, while mono- and oligomers have a bimodal promoter/inhibitor effect on step propagation. This bimodality can be interpreted as the result of attachment of mono- and oligomers along the steps along with a modification of the kinetics of kink generation and/or propagation. The bimodal step kinematic effect is accompanied by a single morphologic effect: growth islands transform from a rhombus into an ellipse. This effect has been reported for other additives, indicating that many additives generate few morphologies. Such a convergence limits the versatility of chemical control on biomorphogenesis. Contrarily, the strong kinetic effect of silicic acids may make them very efficient controllers of biomorphogenesis, if coupled with a physical shape control, for example, by templates. Thus, silicic acids show a unique bimodality as a controller of calcite biomineralisation and as an abundant biomineral.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom