z-logo
open-access-imgOpen Access
Activating Mutations in TOR Are in Similar Structures As Oncogenic Mutations in PI3KCα
Author(s) -
Thomas W. Sturgill,
Michael N. Hall
Publication year - 2009
Publication title -
acs chemical biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.899
H-Index - 111
eISSN - 1554-8937
pISSN - 1554-8929
DOI - 10.1021/cb900193e
Subject(s) - pharmacophore , protein kinase domain , biology , mutation , genetics , kinase , docking (animal) , computational biology , microbiology and biotechnology , gene , biochemistry , mutant , medicine , nursing
TOR (Target of Rapamycin) is a highly conserved Ser/Thr kinase and a central controller of cell growth. Using the crystal structure of the related lipid kinase PI3KCgamma, we built a model of the catalytic region of TOR, from the FAT domain to near the end of the FATC domain. The model reveals that activating mutations in TOR, identified in yeast in a genetic selection for Rheb-independence, correspond to hotspots for oncogenic mutations in PI3KCalpha. The activating mutations are in the catalytic domain (helices kalpha3, kalpha9, kalpha11) and the helical domain of TOR. Docking studies with small molecule inhibitors (PP242, NVP-BEZ235, and Ku-0063794) show that drugs currently in development utilize a novel pharmacophore space to achieve specificity. Thus, our model provides insight on the regulation of TOR and may be useful in the design of new anticancer drugs.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom