z-logo
open-access-imgOpen Access
Probing Enzymes Late in the Trypanosomal Glycosylphosphatidylinositol Biosynthetic Pathway with Synthetic Glycosylphosphatidylinositol Analogues
Author(s) -
Michael D. Urbaniak,
Dmitry V. Yashunsky,
Arthur Crossman,
Andrei V. Nikolaev,
Michael A. J. Ferguson
Publication year - 2008
Publication title -
acs chemical biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.899
H-Index - 111
eISSN - 1554-8937
pISSN - 1554-8929
DOI - 10.1021/cb800143w
Subject(s) - enzyme , biochemistry , biosynthesis , biology , chemistry , microbiology and biotechnology , computational biology
Glycosylphosphatidylinositol (GPI)-anchored proteins are abundant in the protozoan parasite Trypanosoma brucei, the causative agent of African sleeping sickness in humans and the related disease Nagana in cattle, and disruption of GPI biosynthesis is genetically and chemically validated as a drug target. Here, we examine the ability of enzymes of the trypanosomal GPI biosynthetic pathway to recognize and process a series of synthetic dimannosyl-glucosaminylphosphatidylinositol analogues containing systematic modifications on the mannose residues. The data reveal which portions of the natural substrate are important for recognition, explain why mannosylation occurs prior to inositol acylation in the trypanosomal pathway, and identify the first inhibitor of the third alpha-mannosyltransferase of the GPI biosynthetic pathway.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom