Metabolic Regulation of Histone Post-Translational Modifications
Author(s) -
Jing Fan,
Kimberly A. Krautkramer,
Jessica L. Feldman,
John M. Denu
Publication year - 2015
Publication title -
acs chemical biology
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 1.899
H-Index - 111
eISSN - 1554-8937
pISSN - 1554-8929
DOI - 10.1021/cb500846u
Subject(s) - epigenetics , histone , biology , histone methyltransferase , histone methylation , computational biology , microbiology and biotechnology , biochemistry , dna , dna methylation , gene expression , gene
Histone post-translational modifications regulate transcription and other DNA-templated functions. This process is dynamically regulated by specific modifying enzymes whose activities require metabolites that either serve as cosubstrates or act as activators/inhibitors. Therefore, metabolism can influence histone modification by changing local concentrations of key metabolites. Physiologically, the epigenetic response to metabolism is important for nutrient sensing and environment adaption. In pathologic states, the connection between metabolism and histone modification mediates epigenetic abnormality in complex disease. In this review, we summarize recent studies of the molecular mechanisms involved in metabolic regulation of histone modifications and discuss their biological significance.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom