z-logo
open-access-imgOpen Access
Toroidal-Spiral Particles for Codelivery of Anti-VEGFR-2 Antibody and Irinotecan: A Potential Implant to Hinder Recurrence of Glioblastoma Multiforme
Author(s) -
Vishal Sharma,
Melanie Köllmer,
Magdalena Szymusiak,
Ludwig C. Nitsche,
Richard A. Gemeinhart,
Ying Liu
Publication year - 2014
Publication title -
biomacromolecules
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.689
H-Index - 220
eISSN - 1526-4602
pISSN - 1525-7797
DOI - 10.1021/bm401550r
Subject(s) - irinotecan , chemistry , biophysics , glioma , glioblastoma , nanoparticle , flow cytometry , ethylene glycol , spheroid , cancer research , materials science , nanotechnology , microbiology and biotechnology , biochemistry , biology , in vitro , cancer , genetics , colorectal cancer , organic chemistry
Heterogeneous toroidal-spiral particles (TSPs) were generated by polymer droplet sedimentation, interaction, and cross-linking. TSPs provide a platform for encapsulation and release of multiple compounds of different sizes and physicochemical properties. As a model system, we demonstrate the encapsulation and independently controlled release of an anti-VEGFR-2 antibody and irinotecan for the treatment of glioblastoma multiforme. The anti-VEGFR-2 antibody was released from the TS channels and its binding to HUVECs was confirmed by confocal microscopy and flow cytometry, suggesting active antibody encapsulation and release. Irinotecan, a small molecule drug, was released from the dense polymer matrix of poly(ethylene glycol) diacrylate (MW ~ 700 g/mol; PEGDA 700). Released irinotecan inhibited the proliferation of U251 malignant glioma cells. Since the therapeutic compounds are released through different pathways, specifically diffusion through the polymer matrix versus TS channels, the release rate can be controlled independently through the design of the structure and material of particle components.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom