Identification of the Plasticity-Relevant Fucose-α(1−2)-Galactose Proteome from the Mouse Olfactory Bulb
Author(s) -
Heather E. Murrey,
Scott B. Ficarro,
Chithra Krishnamurthy,
Steven E. Domino,
Eric C. Peters,
Linda C. HsiehWilson
Publication year - 2009
Publication title -
biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.43
H-Index - 253
eISSN - 1520-4995
pISSN - 0006-2960
DOI - 10.1021/bi900640x
Subject(s) - olfactory bulb , fucose , proteome , identification (biology) , olfactory system , galactose , biochemistry , biology , chemistry , microbiology and biotechnology , neuroscience , botany , central nervous system
Fucose-alpha(1-2)-galactose [Fucalpha(1-2)Gal] sugars have been implicated in the molecular mechanisms that underlie neuronal development, learning, and memory. However, an understanding of their precise roles has been hampered by a lack of information regarding Fucalpha(1-2)Gal glycoproteins. Here, we report the first proteomic studies of this plasticity-relevant epitope. We identify five classes of putative Fucalpha(1-2)Gal glycoproteins: cell adhesion molecules, ion channels and solute carriers/transporters, ATP-binding proteins, synaptic vesicle-associated proteins, and mitochondrial proteins. In addition, we show that Fucalpha(1-2)Gal glycoproteins are enriched in the developing mouse olfactory bulb (OB) and exhibit a distinct spatiotemporal expression that is consistent with the presence of a "glycocode" to help direct olfactory sensory neuron (OSN) axonal pathfinding. We find that expression of Fucalpha(1-2)Gal sugars in the OB is regulated by the alpha(1-2)fucosyltransferase FUT1. FUT1-deficient mice exhibit developmental defects, including fewer and smaller glomeruli and a thinner olfactory nerve layer, suggesting that fucosylation contributes to OB development. Our findings significantly expand the number of Fucalpha(1-2)Gal glycoproteins and provide new insights into the molecular mechanisms by which fucosyl sugars contribute to neuronal processes.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom