Conformational Switching upon Phosphorylation: A Predictive Framework Based on Energy Landscape Principles
Author(s) -
Joachim Lätzer,
Tongye Shen,
Peter G. Wolynes
Publication year - 2008
Publication title -
biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.43
H-Index - 253
eISSN - 1520-4995
pISSN - 0006-2960
DOI - 10.1021/bi701350v
Subject(s) - energy landscape , phosphorylation , chemistry , protein structure , conformational change , biophysics , chemical physics , biochemistry , biology
We investigate how post-translational phosphorylation modifies the global conformation of a protein by changing its free energy landscape using two test proteins, cystatin and NtrC. We first examine the changes in a free energy landscape caused by phosphorylation using a model containing information about both structural forms. For cystatin the free energy cost is fairly large indicating a low probability of sampling the phosphorylated conformation in a perfectly funneled landscape. The predicted barrier for NtrC conformational transition is several times larger than the barrier for cystatin, indicating that the switch protein NtrC most probably follows a partial unfolding mechanism to move from one basin to the other. Principal component analysis and linear response theory show how the naturally occurring conformational changes in unmodified proteins are captured and stabilized by the change of interaction potential. We also develop a partially guided structure prediction Hamiltonian which is capable of predicting the global structure of a phosphorylated protein using only knowledge of the structure of the unphosphorylated protein or vice versa. This algorithm makes use of a generic transferable long-range residue contact potential along with details of structure short range in sequence. By comparing the results obtained with this guided transferable potential to those from the native-only, perfectly funneled Hamiltonians, we show that the transferable Hamiltonian correctly captures the nature of the global conformational changes induced by phosphorylation and can sample substantially correct structures for the modified protein with high probability.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom