z-logo
open-access-imgOpen Access
A Unified Kinetic Mechanism Applicable to Multiple DNA Polymerases,
Author(s) -
Marina Bakhtina,
Michelle P. Roettger,
Sandeep Kumar,
MingDaw Tsai
Publication year - 2007
Publication title -
biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.43
H-Index - 253
eISSN - 1520-4995
pISSN - 0006-2960
DOI - 10.1021/bi700084w
Subject(s) - dna polymerase , polymerase , dna polymerase i , processivity , klenow fragment , dna , chemistry , biophysics , dna polymerase ii , nucleotide , dna clamp , dna replication , microbiology and biotechnology , stereochemistry , biology , biochemistry , polymerase chain reaction , reverse transcriptase , exonuclease , gene
After extensive studies spanning over half a century, there is little consensus on the kinetic mechanism of DNA polymerases. Using stopped-flow fluorescence assays for mammalian DNA polymerase beta (Pol beta), we have previously identified a fast fluorescence transition corresponding to conformational closing, and a slow fluorescence transition matching the rate of single-nucleotide incorporation. Here, by varying pH and buffer viscosity, we have decoupled the rate of single-nucleotide incorporation from the rate of the slow fluorescence transition, thus confirming our previous hypothesis that this transition represents a conformational event after chemistry, likely subdomain reopening. Analysis of an R258A mutant indicates that rotation of the Arg258 side chain is not rate-limiting in the overall kinetic pathway of Pol beta, yet is kinetically significant in subdomain reopening. We have extended our kinetic analyses to a high-fidelity polymerase, Klenow fragment (KF), and a low-fidelity polymerase, African swine fever virus DNA polymerase X (Pol X), and showed that they follow the same kinetic mechanism as Pol beta, while differing in relative rates of single-nucleotide incorporation and the putative conformational reopening. Our data suggest that the kinetic mechanism of Pol beta is not an exception among polymerases, and furthermore, its delineated kinetic mechanism lends itself as a platform for comparison of the kinetic properties of different DNA polymerases and their mutants.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom