z-logo
open-access-imgOpen Access
Structural and Functional Insights into the N-Terminus of Schizosaccharomyces pombe Cdc5
Author(s) -
Scott E. Collier,
Markus Voehler,
Dungeng Peng,
Ryoma Ohi,
Kathleen L. Gould,
Nicholas J. Reiter,
Melanie D. Ohi
Publication year - 2014
Publication title -
biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.43
H-Index - 253
eISSN - 1520-4995
pISSN - 0006-2960
DOI - 10.1021/bi5008639
Subject(s) - spliceosome , schizosaccharomyces pombe , rna splicing , biology , schizosaccharomyces , snrnp , intron , saccharomyces cerevisiae , rna binding protein , myb , rna , microbiology and biotechnology , genetics , biochemistry , yeast , transcription factor , gene
The spliceosome is a dynamic macromolecular machine composed of five small nuclear ribonucleoparticles (snRNPs), the NineTeen Complex (NTC), and other proteins that catalyze the removal of introns mature to form the mature message. The NTC, named after its founding member Saccharomyces cerevisiae Prp19, is a conserved spliceosome subcomplex composed of at least nine proteins. During spliceosome assembly, the transition to an active spliceosome correlates with stable binding of the NTC, although the mechanism of NTC function is not understood. Schizosaccharomyces pombe Cdc5, a core subunit of the NTC, is an essential protein required for pre-mRNA splicing. The highly conserved Cdc5 N-terminus contains two canonical Myb (myeloblastosis) repeats (R1 and R2) and a third domain (D3) that was previously classified as a Myb-like repeat. Although the N-terminus of Cdc5 is required for its function, how R1, R2, and D3 each contribute to functionality is unclear. Using a combination of yeast genetics, structural approaches, and RNA binding assays, we show that R1, R2, and D3 are all required for the function of Cdc5 in cells. We also show that the N-terminus of Cdc5 binds RNA in vitro. Structural and functional analyses of Cdc5-D3 show that, while this domain does not adopt a Myb fold, Cdc5-D3 preferentially binds double-stranded RNA. Our data suggest that the Cdc5 N-terminus interacts with RNA structures proposed to be near the catalytic core of the spliceosome.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom