z-logo
open-access-imgOpen Access
Thermodynamics of Binding of Structurally Similar Ligands to Histone Deacetylase 8 Sheds Light on Challenges in the Rational Design of Potent and Isozyme-Selective Inhibitors of the Enzyme
Author(s) -
Palwinder Singh,
Takayoshi Suzuki,
Tanmay Mandal,
Narayanaganesh Balsubramanian,
Manas K. Haldar,
Dustin Mueller,
Jerrod A. Strode,
Gregory R. Cook,
Sanku Mallik,
D. K. Srivastava
Publication year - 2014
Publication title -
biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.43
H-Index - 253
eISSN - 1520-4995
pISSN - 0006-2960
DOI - 10.1021/bi500711x
Subject(s) - isozyme , histone deacetylase , enzyme , chemistry , hdac10 , biochemistry , rational design , histone , stereochemistry , computational chemistry , biology , genetics , gene
Among the different histone deacetylase (HDAC) isozymes, HDAC8 is the most highly malleable enzyme, and it exhibits the potential to accommodate structurally diverse ligands (albeit with moderate binding affinities) in its active site pocket. To probe the molecular basis of this feature, we performed detailed thermodynamic studies of the binding of structurally similar ligands, which differed with respect to the "cap", "linker", and "metal-binding" regions of the suberoylanilide hydroxamic acid (SAHA) pharmacophore, to HDAC8. The experimental data revealed that although the enthalpic (ΔH°) and entropic (ΔS°) changes for the binding of individual SAHA analogues to HDAC8 were substantially different, their binding free energies (ΔG°) were markedly similar, conforming to a strong enthalpy-entropy compensation effect. This effect was further observed in the temperature-dependent thermodynamics of binding of all SAHA analogues to the enzyme. Notably, in contrast to other metalloenzymes, our isothermal titration calorimetry experiments (performed in different buffers of varying ionization enthalpies) suggest that depending on the ligand, its zinc-binding group may or may not be deprotonated upon the binding to HDAC8. Furthermore, the heat capacity changes (ΔCp°) associated with the ligand binding to HDAC8 markedly differed from one SAHA analogue to the other, and such features could primarily be rationalized in light of the dynamic flexibility in the enzyme structure in conjunction with the reorganization of the active site resident water molecules. Arguments are presented that although the binding thermodynamic features described above would facilitate identification of weak to moderately tight-binding HDAC8 inhibitors (by a high-throughput and/or virtual screening of libraries of small molecules), they would pose major challenges for the structure-based rational design of highly potent and isozyme-selective inhibitors of human HDAC8.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom