z-logo
open-access-imgOpen Access
The Semiquinone at the Qi Site of the bc1 Complex Explored Using HYSCORE Spectroscopy and Specific Isotopic Labeling of Ubiquinone in Rhodobacter sphaeroides via 13C Methionine and Construction of a Methionine Auxotroph
Author(s) -
Sangjin Hong,
Wagner B. De Almeida,
Alexander T. Taguchi,
Rimma I. Samoilova,
Robert B. Gennis,
Patrick J. O’Malley,
Sergei A. Dikanov,
Antony R. Crofts
Publication year - 2014
Publication title -
biochemistry
Language(s) - English
Resource type - Journals
eISSN - 1520-4995
pISSN - 0006-2960
DOI - 10.1021/bi500654y
Subject(s) - semiquinone , chemistry , rhodobacter sphaeroides , hyperfine structure , crystallography , methyl group , spectroscopy , photochemistry , stereochemistry , quinone , group (periodic table) , physics , biochemistry , photosynthesis , organic chemistry , quantum mechanics
Specific isotopic labeling at the residue or substituent level extends the scope of different spectroscopic approaches to the atomistic level. Here we describe (13)C isotopic labeling of the methyl and methoxy ring substituents of ubiquinone, achieved through construction of a methionine auxotroph in Rhodobacter sphaeroides strain BC17 supplemented with l-methionine with the side chain methyl group (13)C-labeled. Two-dimensional electron spin echo envelope modulation (HYSCORE) was applied to study the (13)C methyl and methoxy hyperfine couplings in the semiquinone generated in situ at the Qi site of the bc1 complex in its membrane environment. The data were used to characterize the distribution of unpaired spin density and the conformations of the methoxy substituents based on density functional theory calculations of (13)C hyperfine tensors in the semiquinone of the geometry-optimized X-ray structure of the bc1 complex (Protein Data Bank entry 1PP9 ) with the highest available resolution. Comparison with other proteins indicates individual orientations of the methoxy groups in each particular case are always different from the methoxy conformations in the anion radical prepared in a frozen alcohol solution. The protocol used in the generation of the methionine auxotroph is more generally applicable and, because it introduces a gene deletion using a suicide plasmid, can be applied repeatedly.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom