Investigation of Ion Binding in Chlorite Dismutases by Means of Molecular Dynamics Simulations
Author(s) -
Axel Sündermann,
Maria Reif,
Stefan Hofbauer,
Christian Obinger,
Chris Oostenbrink
Publication year - 2014
Publication title -
biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.43
H-Index - 253
eISSN - 1520-4995
pISSN - 0006-2960
DOI - 10.1021/bi500467h
Subject(s) - molecular dynamics , chlorite , chemistry , dynamics (music) , ion , chemical physics , computational chemistry , materials science , physics , organic chemistry , quartz , composite material , acoustics
Chlorite dismutases are prokaryotic heme b oxidoreductases that convert chlorite to chloride and dioxygen. It has been postulated that during turnover hypochlorite is formed transiently, which might be responsible for the observed irreversible inactivation of these iron proteins. The only charged distal residue in the heme cavity is a conserved and mobile arginine, but its role in catalysis and inactivation is not fully understood. In the present study, the pentameric chlorite dismutase (Cld) from the bacterium Candidatus Nitrospira defluvii was probed for binding of the low spin ligand cyanide, the substrate chlorite, and the intermediate hypochlorite. Simulations were performed with the enzyme in the ferrous, ferric, and compound I state. Additionally, the variant R173A was studied. We report the parametrization for the GROMOS force field of the anions ClO(-), ClO2(-), ClO3(-), and ClO4(-) and describe spontaneous binding, unbinding, and rebinding events of chlorite and hypochlorite, as well as the dynamics of the conformations of Arg173 during simulations. The findings suggest that (i) chlorite binding to ferric NdCld occurs spontaneously and (ii) that Arg173 is important for recognition and to impair hypochlorite leakage from the reaction sphere. The simulation data is discussed in comparison with experimental data on catalysis and inhibition of chlorite dismutase.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom