z-logo
open-access-imgOpen Access
Structural Characterization of Interactions between the Double-Stranded RNA-Binding Zinc Finger Protein JAZ and Nucleic Acids
Author(s) -
Russell G. Burge,
Maria A. MartinezYamout,
H. Jane Dyson,
Peter E. Wright
Publication year - 2014
Publication title -
biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.43
H-Index - 253
eISSN - 1520-4995
pISSN - 0006-2960
DOI - 10.1021/bi401675h
Subject(s) - zinc finger , rna , isothermal titration calorimetry , dna , chemistry , zinc , crystallography , biophysics , biochemistry , stereochemistry , biology , transcription factor , organic chemistry , gene
The interactions of the human double-stranded RNA-binding zinc finger protein JAZ with RNA or DNA were investigated using electrophoretic mobility-shift assays, isothermal calorimetry, and nuclear magnetic resonance spectroscopy. Consistent with previous reports, JAZ has very low affinity for duplex DNA or single-stranded RNA, but it binds preferentially to double-stranded RNA (dsRNA) with no detectable sequence specificity. The affinity of JAZ for dsRNA is unaffected by local structural features such as loops, overhangs, and bulges, provided a sufficient length of reasonably well-structured A-form RNA (about 18 bp for a single zinc finger) is present. Full-length JAZ contains four Cys2His2 zinc fingers (ZF1-4) and has the highest apparent affinity for dsRNA; two-finger constructs ZF12 and ZF23 have lower affinity, and ZF34 binds even more weakly. The fourth zinc finger, ZF4, has no measurable RNA-binding affinity. Single zinc finger constructs ZF1, ZF2, and ZF3 show evidence for multiple-site binding on the minimal RNA. Fitting of quantitative NMR titration and isothermal calorimetry data to a two-site binding model gave Kd1 ∼ 10 μM and Kd2 ∼ 100 μM. Models of JAZ-RNA complexes were generated using the high-ambiguity-driven biomolecular docking (HADDOCK) program. Single zinc fingers bind to the RNA backbone without sequence specificity, forming complexes with contacts between the RNA minor groove and residues in the N-terminal β strands and between the major groove and residues in the helix-kink-helix motif. We propose that the non-sequence-specific interaction between the zinc fingers of JAZ with dsRNA is dependent only on the overall shape of the A-form RNA.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom