z-logo
open-access-imgOpen Access
A Structural Basis for the Regulation of an H-NOX-Associated Cyclic-di-GMP Synthase/Phosphodiesterase Enzyme by Nitric Oxide-Bound H-NOX
Author(s) -
Tanaya Lahiri,
Bowu Luan,
Daniel P. Raleigh,
Elizabeth M. Boon
Publication year - 2014
Publication title -
biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.43
H-Index - 253
eISSN - 1520-4995
pISSN - 0006-2960
DOI - 10.1021/bi401597m
Subject(s) - nox , phosphodiesterase , nitric oxide , chemistry , enzyme , nitric oxide synthase , biochemistry , nitrogen oxide , organic chemistry , combustion
Biofilms are surface-attached communities of bacteria enclosed in a polysaccharide matrix. Bacteria in a biofilm are extremely resistant to antibiotics. Several recent reports have linked the signaling molecule nitric oxide (NO) with biofilm dispersal. We have previously reported that an H-NOX (heme-nitric oxide/oxygen binding) protein in the biofilm-dwelling bacterium Shewanella woodyi mediates NO-induced biofilm dispersal. In S. woodyi, H-NOX (SwH-NOX) is cocistronic with a gene encoding a dual-functioning diguanylate cyclase/phosphodiesterase enzyme, designated here as HaCE (H-NOX-associated cyclic-di-GMP processing enzyme). Enzymes such as these are responsible for regulating the intracellular concentrations of cyclic-di-GMP, a secondary signaling molecule essential to biofilm formation in bacteria. We have demonstrated that NO-bound SwH-NOX regulates both enzymatic activities of SwHaCE, resulting in decreased cellular cyclic-di-GMP levels and disruption of biofilm formation. Thus, H-NOX/HaCE represents a potential drug target for regulating biofilm formation. In this work, the SwH-NOX surface residues critical for the formation of a protein complex with SwHaCE are identified using nuclear magnetic resonance, fluorescence quenching, and cosedimentation. Enzyme assays confirm this protein-protein interface and its importance for H-NOX/HaCE function.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom