z-logo
open-access-imgOpen Access
Influence of Acylation of a Peptide Corresponding to the Amino-Terminal Region of Endothelial Nitric Oxide Synthase on the Interaction with Model Membranes
Author(s) -
Belén Yélamos,
Fernando Roncal,
Juan Pablo Albar,
Ignacio RodríguezCrespo,
Francisco Gavilanes
Publication year - 2006
Publication title -
biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.43
H-Index - 253
eISSN - 1520-4995
pISSN - 0006-2960
DOI - 10.1021/bi0514865
Subject(s) - acylation , chemistry , myristoylation , peptide , myristic acid , stereochemistry , membrane , phospholipid , amino acid , sphingomyelin , acyl group , biochemistry , palmitic acid , fatty acid , organic chemistry , alkyl , catalysis
Covalent attachment of fatty acids to proteins is a common form of protein modification which has been shown to influence both structure and interaction with membranes. Endothelial nitric oxide synthase (eNOS) is dually acylated by the fatty acids myristate and palmitate. We have synthesized four peptides corresponding to the first 28 amino acids of the N-terminal region of eNOS. Besides the nonacylated eNOS sequence, three additional peptides with different degrees of acylation have been obtained: myristoylated, doubly palmitoylated, and dually myristoylated and doubly palmitoylated. Acylation itself, myristic and/or palmitic, confers the peptide the ability to adopt extended conformations, indicated by the fact that the CD spectrum of all acylated peptides has a minimum at approximately 215 nm characteristic of beta-sheet structure. The nonacylated sequence interacts with model membranes composed of acidic phospholipids probably through ionic interactions with the polar headgroup of the phospholipids. However, the acylated peptides are able to insert deeply into the hydrophobic core of both neutral and acidic phospholipids, maintaining the spectral features of extended conformations. When DMPC vesicles containing cholesterol and sphingomyelin at 10% were used, the insertion of the triacylated peptide almost completely canceled the thermal transition, although the interaction of the other acylated peptides also reduced the transition amplitude but to a much lower extent and affected only the acyl chains in the fluid state.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom