6-Thiocyanatoflavins and 6-mercaptoflavins as active-site probes of flavoproteins
Author(s) -
Vincent Massey,
Sandro Ghisla,
Kunio Yagi
Publication year - 1986
Publication title -
biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.43
H-Index - 253
eISSN - 1520-4995
pISSN - 0006-2960
DOI - 10.1021/bi00372a046
Subject(s) - flavin group , flavoprotein , chemistry , flavodoxin , dithiothreitol , stereochemistry , flavin adenine dinucleotide , oxidase test , biochemistry , enzyme , ferredoxin , cofactor
6-Thiocyanatoflavins have been found to be susceptible to nucleophilic displacement reactions with sulfite and thiols, yielding respectively the 6-S-SO3--flavin and 6-mercaptoflavin, with rate constants at pH 7.0, 20 degrees C, of 55 M-1 min-1 for sulfite and 1000 M-1 min-1 for dithiothreitol. The 6-SCN-flavin binds tightly to riboflavin-binding protein as the riboflavin derivative, to apoflavodoxin, apo-lactate oxidase, and apo-Old Yellow Enzyme as the FMN derivative, and to apo-D-amino acid oxidase as the FAD derivative. The riboflavin-binding protein derivative is inaccessible to dithiothreitol attack, and the lactate oxidase and D-amino acid oxidase derivatives show only limited accessibility. However, the flavodoxin and Old Yellow Enzyme derivatives react readily with dithiothreitol, indicating that the flavin 6-position is exposed to solvent in these proteins. The lactate oxidase and D-amino acid oxidase derivatives convert slowly but spontaneously to the 6-mercaptoflavin enzyme forms in the absence of any added thiol, indicating the presence of a thiol residue in the flavin binding site of these proteins. The reaction rates have been investigated of 6-mercaptoflavins with iodoacetamide, N-ethylmaleimide, methyl methanethiosulfonate, H2O2, and m-chloroperbenzoate, in both the free and protein-bound state. The results confirm the conclusions drawn from the studies with 6-SCN-flavins described above and from 6-N3-flavins [Massey, V., Ghisla, S., & Yagi, K. (1986) Biochemistry (preceding paper in this issue)]. The spectral properties of the protein-bound 6-mercaptoflavin vary widely among the five proteins studied and show stabilization of the neutral flavin with flavodoxin and riboflavin-binding protein and of the anionic species by Old Yellow Enzyme, lactate oxidase, and D-amino acid oxidase. In the case of the latter two enzymes, the stabilization appears to be due to interaction of the negatively charged flavin with a positively charged protein residue located near the flavin pyrimidine ring. This positively charged residue appears to be responsible also for the strong stabilization of the two-electron oxidation state of the mercaptoflavin as the 6-S-oxide. With the other flavoproteins studied this oxidation level is stabilized as the 6-sulfenic acid or 6-sulfenate.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom