Preparation and some properties of 6-substituted flavins as active site probes for flavin enzymes
Author(s) -
Sandro Ghisla,
Vincent Massey,
Kunio Yagi
Publication year - 1986
Publication title -
biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.43
H-Index - 253
eISSN - 1520-4995
pISSN - 0006-2960
DOI - 10.1021/bi00359a030
Subject(s) - flavin group , active site , chemistry , flavoprotein , enzyme , biochemistry , combinatorial chemistry , stereochemistry
6-Azidoflavins, 6-thiocyanatoflavins, and 6-mercaptoflavins at the lumiflavin, riboflavin, FMN, and FAD level were prepared from the corresponding 6-aminoflavins and some of their properties investigated. They are bound tightly by apoflavin enzymes which bind either riboflavin, FMN, or FAD. 6-Azidoflavins undergo facile photolysis. One major product was identified as 6-aminoflavin. A further product, which was formed also during acid decomposition of the azide, results from opening of the flavin benzene ring and is proposed to have a lumazine structure. 6-Thiocyanatoflavins are easily converted by dithiothreitol to 6-mercaptoflavins. The latter are stabilized against dimerization in the presence of reducing thiols. 6-Mercaptoflavins have a pK of 5.9, which corresponds to ionization of the 6-SH function. The neutral form is yellow, while the anion is green, due to a long-wavelength band (lambda max approximately 600 nm) extending beyond 700 nm. These properties suggest the use of these 6-substituted flavins for probing the active site of flavin enzymes. Because their reactive substituents are in close proximity to the flavin N(5)-position, these 6-substituted derivatives should also serve as useful probes of the environment around the flavin N(5), a position known to be involved in all flavin-mediated redox processes.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom