z-logo
open-access-imgOpen Access
Transmembrane Peptide NB of Influenza B: A Simulation, Structure, and Conductance Study
Author(s) -
Wolfgang B. Fischer,
Maureen Pitkeathly,
B.A. Wallace,
Lucy R. Forrest,
Graham R. Smith,
Mark S.P. Sansom
Publication year - 2000
Publication title -
biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.43
H-Index - 253
eISSN - 1520-4995
pISSN - 0006-2960
DOI - 10.1021/bi001000e
Subject(s) - conductance , peptide , chemistry , lipid bilayer , bilayer , ion channel , helix bundle , transmembrane protein , vesicle , helix (gastropod) , crystallography , biophysics , membrane , protein structure , biochemistry , physics , receptor , ecology , snail , biology , condensed matter physics
The putative transmembrane segment of the ion channel forming peptide NB from influenza B was synthesized by standard solid-phase peptide synthesis. Insertion into the planar lipid bilayer revealed ion channel activity with conductance levels of 20, 61, 107, and 142 pS in a 0.5 M KCl buffer solution. In addition, levels at -100 mV show conductances of 251 and 413 pS. A linear current-voltage relation reveals a voltage-independent channel formation. In methanol and in vesicles the peptide appears to adopt an alpha-helical-like structure. Computational models of alpha-helix bundles using N = 4, 5, and 6 NB peptides per bundle revealed water-filled pores after 1 ns of MD simulation in a solvated lipid bilayer. Calculated conductance values [using HOLE (Smart et al. (1997) Biophys. J. 72, 1109-1126)] of ca. 20, 60, and 90 pS, respectively, suggested that the multiple conductance levels seen experimentally must correspond to different degrees of oligomerization of the peptide to form channels.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom