z-logo
open-access-imgOpen Access
Fluorogen Activating Protein–Affibody Probes: Modular, No-Wash Measurement of Epidermal Growth Factor Receptors
Author(s) -
Yi Wang,
Cheryl A. Telmer,
Brigitte F. Schmidt,
Josef D. Franke,
Stephan Ort,
Donna J. ArndtJovin,
Marcel P. Bruchez
Publication year - 2014
Publication title -
bioconjugate chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.279
H-Index - 172
eISSN - 1520-4812
pISSN - 1043-1802
DOI - 10.1021/bc500525b
Subject(s) - chemistry , epidermal growth factor , modular design , receptor , epidermal growth factor receptor , nanotechnology , biophysics , biochemistry , biology , materials science , computer science , operating system
Fluorescence is essential for dynamic live cell imaging, and affinity reagents are required for quantification of endogenous proteins. Various fluorescent dyes can report on different aspects of biological trafficking, but must be independently conjugated to affinity reagents and characterized for specific biological readouts. Here we present the characterization of a new modular platform for small anti-EGFR affinity probes for studying rapid changes in receptor pools. A protein domain (FAP dL5**) that binds to malachite-green (MG) derivatives for fluorescence activation was expressed as a recombinant fusion to one or two copies of the compact EGFR binding affibody ZEGFR:1907. This is a recombinant and fluorogenic labeling reagent for native EGFR molecules. In vitro fluorescence assays demonstrated that the binding of these dyes to the FAP-affibody fusions produced thousand-fold fluorescence enhancements, with high binding affinity and fast association rates. Flow cytometry assays and fluorescence microscopy demonstrated that these probes label endogenous EGFR on A431 cells without disruption of EGFR function, and low nanomolar surface Kd values were observed with the double-ZEGFR:1907 constructs. The application of light-harvesting fluorogens (dyedrons) significantly improved the detected fluorescence signal. Altering the order of addition of the ligand, probe, and dyes allowed differentiation between surface and endocytotic pools of receptors to reveal the rapid dynamics of endocytic trafficking. Therefore, FAP/affibody coupling provides a new approach to construct compact and modular affinity probes that label endogenous proteins on living cells and can be used for studying rapid changes in receptor pools involved in trafficking.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom