Fluorine-18 Radiochemistry, Labeling Strategies and Synthetic Routes
Author(s) -
Orit Jacobson,
Dale O. Kiesewetter,
Xiaohong Chen
Publication year - 2014
Publication title -
bioconjugate chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.279
H-Index - 172
eISSN - 1520-4812
pISSN - 1043-1802
DOI - 10.1021/bc500475e
Subject(s) - chemistry , radiochemistry , fluorine , combinatorial chemistry , organic chemistry
Fluorine-18 is the most frequently used radioisotope in positron emission tomography (PET) radiopharmaceuticals in both clinical and preclinical research. Its physical and nuclear characteristics (97% β(+) decay, 109.7 min half-life, 635 keV positron energy), along with high specific activity and ease of large scale production, make it an attractive nuclide for radiochemical labeling and molecular imaging. Versatile chemistry including nucleophilic and electrophilic substitutions allows direct or indirect introduction of (18)F into molecules of interest. The significant increase in (18)F radiotracers for PET imaging accentuates the need for simple and efficient (18)F-labeling procedures. In this review, we will describe the current radiosynthesis routes and strategies for (18)F labeling of small molecules and biomolecules.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom