z-logo
open-access-imgOpen Access
Dynamically Achieved Active Site Precision in Enzyme Catalysis
Author(s) -
Judith P. Klinman
Publication year - 2014
Publication title -
accounts of chemical research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 8.454
H-Index - 395
eISSN - 1520-4898
pISSN - 0001-4842
DOI - 10.1021/ar5003347
Subject(s) - chemistry , active site , enzyme catalysis , protein dynamics , catalysis , chemical physics , substrate (aquarium) , reaction coordinate , transition state , kinetic isotope effect , protein structure , deuterium , molecular dynamics , computational chemistry , atomic physics , physics , biochemistry , geology , oceanography
CONSPECTUS: The grand challenge in enzymology is to define and understand all of the parameters that contribute to enzymes' enormous rate accelerations. The property of hydrogen tunneling in enzyme reactions has moved the focus of research away from an exclusive focus on transition state stabilization toward the importance of the motions of the heavy atoms of the protein, a role for reduced barrier width in catalysis, and the sampling of a protein conformational landscape to achieve a family of protein substates that optimize enzyme-substrate interactions and beyond. This Account focuses on a thermophilic alcohol dehydrogenase for which the chemical step of hydride transfer is rate determining across a wide range of experimental conditions. The properties of the chemical coordinate have been probed using kinetic isotope effects, indicating a transition in behavior below 30 °C that distinguishes nonoptimal from optimal C-H activation. Further, the introduction of single site mutants has the impact of either enhancing or eliminating the temperature dependent transition in catalysis. Biophysical probes, which include time dependent hydrogen/deuterium exchange and fluorescent lifetimes and Stokes shifts, have also been pursued. These studies allow the correlation of spatially resolved transitions in protein motions with catalysis. It is now possible to define a long-range network of protein motions in ht-ADH that extends from a dimer interface to the substrate binding domain across to the cofactor binding domain, over a distance of ca. 30 Å. The ongoing challenge to obtaining spatial and temporal resolution of catalysis-linked protein motions is discussed.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom