Harnessing Tunable Scanning Probe Techniques to Measure Shear Enhanced Adhesion of Gecko-Inspired Fibrillar Arrays
Author(s) -
Yasong Li,
James Zhou,
Cheng Zhang,
Carlo Me,
Byron D. Gates
Publication year - 2014
Publication title -
acs applied materials and interfaces
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.535
H-Index - 228
eISSN - 1944-8252
pISSN - 1944-8244
DOI - 10.1021/am506739q
Subject(s) - gecko , materials science , adhesion , nanoscopic scale , nanotechnology , climb , adhesive , surface finish , scanning probe microscopy , atomic force microscopy , composite material , layer (electronics) , ecology , biology , aerospace engineering , engineering
The hierarchical arrays of mesoscale to nanoscale fibrillar structures on a gecko's foot enable the animal to climb surfaces of varying roughness. Adhesion force between the fibrillar structures and various surfaces is maximized after the gecko drags its foot in one direction, which has also been demonstrated to improve the adhesion forces of artificial fibrillar arrays. Essential conditions that influence the magnitude of these interactions include the lateral distance traveled and velocity between the contacting surfaces, as well as the velocity at which the two surfaces are subsequently separated. These parameters have, however, not been systematically investigated to assess the adhesion properties of artificial adhesives. We introduce a systematic study that investigates these conditions using a scanning probe microscope to measure the adhesion forces of artificial adhesives through a process that mimics the mechanism by which a gecko climbs. The measured adhesion response was different for arrays of shorter and longer fibrils. These results from 9000 independent measurements also provide further insight into the dynamics of the interactions between fibrillar arrays and contacting surfaces. These studies establish scanning probe microscopy techniques as a versatile approach for measuring a variety of adhesion properties of artificial fibrillar adhesives.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom