Tactile Imaging of an Imbedded Palpable Structure for Breast Cancer Screening
Author(s) -
Chieu Nguyen,
Ravi F. Saraf
Publication year - 2014
Publication title -
acs applied materials and interfaces
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.535
H-Index - 228
eISSN - 1944-8252
pISSN - 1944-8244
DOI - 10.1021/am5046789
Subject(s) - palpation , materials science , biomedical engineering , stiffness , contact force , acoustics , medicine , composite material , radiology , physics , quantum mechanics
Apart from texture, the human finger can sense palpation. The detection of an imbedded structure is a fine balance between the relative stiffness of the matrix, the object, and the device. If the device is too soft, its high responsiveness will limit the depth to which the imbedded structure can be detected. The sensation of palpation is an effective procedure for a physician to examine irregularities. In a clinical breast examination (CBE), by pressing over 1 cm(2) area, at a contact pressure in the 70-90 kPa range, the physician feels cancerous lumps that are 8- to 18-fold stiffer than surrounding tissue. Early detection of a lump in the 5-10 mm range leads to an excellent prognosis. We describe a thin-film tactile device that emulates human touch to quantify CBE by imaging the size and shape of 5-10 mm objects at 20 mm depth in a breast model using ∼80 kPa pressure. The linear response of the device allows quantification where the greyscale corresponds to the relative local stiffness. The (background) signal from <2.5-fold stiffer objects at a size below 2 mm is minimal.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom