z-logo
open-access-imgOpen Access
Structure–Property Relationship Study of Substitution Effects on Isoindigo-Based Model Compounds as Electron Donors in Organic Solar Cells
Author(s) -
Yi Ren,
Anna M. Hiszpanski,
Luisa WhittakerBrooks,
YuehLin Loo
Publication year - 2014
Publication title -
acs applied materials and interfaces
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.535
H-Index - 228
eISSN - 1944-8252
pISSN - 1944-8244
DOI - 10.1021/am503812f
Subject(s) - benzothiophene , substituent , materials science , intramolecular force , intermolecular force , organic solar cell , electron donor , electron acceptor , lamellar structure , photochemistry , acceptor , crystallography , chemistry , stereochemistry , molecule , organic chemistry , thiophene , catalysis , physics , composite material , condensed matter physics , polymer
We designed and synthesized a series of isoindigo-based derivatives to investigate how chemical structure modification at both the 6,6'- and 5,5'-positions of the core with electron-rich and electron-poor moieties affect photophysical and redox properties as well as their solid-state organization. Our studies reveal that 6,6'-substitution on the isoindigo core results in a stronger intramolecular charge transfer band due to strong electronic coupling between the 6,6'-substituent and the core, whereas 5,5'-substitution induces a weaker CT band that is more sensitive to the electronic nature of the substituents. In the solid state, 6,6'-derivatives generally form J-aggregates, whereas 5,5'-derivatives form H-aggregates. With only two branched ethylhexyl side chains, the 6,6'-derivatives form organized lamellar structures in the solid state. The incorporation of electron-rich benzothiophene, BT, substituents further enhances ordering, likely because of strong intermolecular donor-acceptor interactions between the BT substituent and the electron-poor isoindigo core on neighboring compounds. Collectively, the enhanced photophysical properties and solid-state organization of the 6,6'-benzothiophene substituted isoindigo derivative compared to the other isoindigo derivatives examined in this study resulted in solar cells with higher power conversion efficiencies when blended with a fullerene derivative.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom