Structure–Property Relationship Study of Substitution Effects on Isoindigo-Based Model Compounds as Electron Donors in Organic Solar Cells
Author(s) -
Yi Ren,
Anna M. Hiszpanski,
Luisa WhittakerBrooks,
YuehLin Loo
Publication year - 2014
Publication title -
acs applied materials and interfaces
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.535
H-Index - 228
eISSN - 1944-8252
pISSN - 1944-8244
DOI - 10.1021/am503812f
Subject(s) - benzothiophene , substituent , materials science , intramolecular force , intermolecular force , organic solar cell , electron donor , electron acceptor , lamellar structure , photochemistry , acceptor , crystallography , chemistry , stereochemistry , molecule , organic chemistry , thiophene , catalysis , physics , composite material , condensed matter physics , polymer
We designed and synthesized a series of isoindigo-based derivatives to investigate how chemical structure modification at both the 6,6'- and 5,5'-positions of the core with electron-rich and electron-poor moieties affect photophysical and redox properties as well as their solid-state organization. Our studies reveal that 6,6'-substitution on the isoindigo core results in a stronger intramolecular charge transfer band due to strong electronic coupling between the 6,6'-substituent and the core, whereas 5,5'-substitution induces a weaker CT band that is more sensitive to the electronic nature of the substituents. In the solid state, 6,6'-derivatives generally form J-aggregates, whereas 5,5'-derivatives form H-aggregates. With only two branched ethylhexyl side chains, the 6,6'-derivatives form organized lamellar structures in the solid state. The incorporation of electron-rich benzothiophene, BT, substituents further enhances ordering, likely because of strong intermolecular donor-acceptor interactions between the BT substituent and the electron-poor isoindigo core on neighboring compounds. Collectively, the enhanced photophysical properties and solid-state organization of the 6,6'-benzothiophene substituted isoindigo derivative compared to the other isoindigo derivatives examined in this study resulted in solar cells with higher power conversion efficiencies when blended with a fullerene derivative.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom