z-logo
open-access-imgOpen Access
Nanostructuring of Iron Surfaces by Low-Energy Helium Ions
Author(s) -
İrem Tanyeli,
L. Marot,
M. C. M. van de Sanden,
G. De Temmerman
Publication year - 2014
Publication title -
acs applied materials and interfaces
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.535
H-Index - 228
eISSN - 1944-8252
pISSN - 1944-8244
DOI - 10.1021/am405624v
Subject(s) - materials science , ion , helium , nanotechnology , engineering physics , atomic physics , physics , quantum mechanics
The behavior of iron surfaces under helium plasma exposure is investigated as a function of surface temperature, plasma exposure time, and He ion flux. Different surface morphologies are observed for a large process parameter range and discussed in terms of temperature-related surface mechanisms. Surface modification is observed under low-He ion flux (in the range of 10(20) m(-2) s(-1)) irradiation, whereas fiberlike iron nanostructures are formed by exposing the surface to a high flux (in the range of 10(23) m(-2) s(-1)) of low-energy He ions at surface temperatures of 450-700 °C. The effects of surface temperature and plasma exposure time on nanostructures are studied. The results show that surface processing by high-flux low-energy He ion bombardment provides a size-controlled nanostructuring on iron surfaces.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom