z-logo
open-access-imgOpen Access
Visible-Light-Assisted Photoelectrochemical Water Oxidation by Thin Films of a Phosphonate-Functionalized Perylene Diimide Plus CoOx Cocatalyst
Author(s) -
Joel Kirner,
Jordan J. Stracke,
Brian A. Gregg,
Richard G. Finke
Publication year - 2014
Publication title -
acs applied materials and interfaces
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.535
H-Index - 228
eISSN - 1944-8252
pISSN - 1944-8244
DOI - 10.1021/am405598w
Subject(s) - diimide , perylene , materials science , phosphonate , photochemistry , visible spectrum , water splitting , indium tin oxide , catalysis , thin film , inorganic chemistry , chemical engineering , photocatalysis , nanotechnology , chemistry , organic chemistry , molecule , optoelectronics , engineering
A novel perylene diimide dye functionalized with phosphonate groups, N,N'-bis(phosphonomethyl)-3,4,9,10-perylenediimide (PMPDI), is synthesized and characterized. Thin films of PMPDI spin-coated onto indium tin oxide (ITO) substrates are further characterized, augmented by photoelectrochemically depositing a CoOx catalyst, and then investigated as photoanodes for water oxidation. These ITO/PMPDI/CoOx electrodes show visible-light-assisted water oxidation with photocurrents in excess of 150 μA/cm(2) at 1.0 V applied bias vs. Ag/AgCl. Water oxidation is confirmed by the direct detection of O2, with a faradaic efficiency of 80 ± 15% measured under 900 mV applied bias vs. Ag/AgCl. Analogous photoanodes prepared with another PDI derivative with alkyl groups in place of PMPDI's phosphonate groups do not function, providing evidence that PMPDI's phosphonate groups may be important for efficient coupling between the inorganic CoOx catalyst and the organic dye. Our ITO/PMPDI/CoOx anodes achieve internal quantum efficiencies for water oxidation ∼1%, and for hydroquinone oxidation of up to ∼6%. The novelty of our system is that, to the best of our knowledge, it is the first device to achieve photoelectrochemically driven water oxidation by a single-layer molecular organic semiconductor thin film coupled to a water-oxidation catalyst.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom