z-logo
open-access-imgOpen Access
Hierarchically Structured Microspheres for High-Efficiency Rutile TiO2-Based Dye-Sensitized Solar Cells
Author(s) -
Meidan Ye,
Dajiang Zheng,
Mengye Wang,
Chang Chen,
Wenming Liao,
Changjian Lin,
Zhiqun Lin
Publication year - 2014
Publication title -
acs applied materials and interfaces
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.535
H-Index - 228
eISSN - 1944-8252
pISSN - 1944-8244
DOI - 10.1021/am405442n
Subject(s) - materials science , rutile , microsphere , dye sensitized solar cell , chemical engineering , photocatalysis , nanotechnology , optoelectronics , chemistry , electrode , engineering , electrolyte , catalysis , biochemistry
Peachlike rutile TiO2 microsphere films were successfully produced on transparent conducting fluorine-doped tin oxide substrate via a facile, one-pot chemical bath route at low temperature (T = 80-85 °C) by introducing polyethylene glycol (PEG) as steric dispersant. The formation of TiO2 microspheres composed of nanoneedles was attributed to the acidic medium for the growth of 1D needle-shaped building blocks where the steric interaction of PEG reduced the aggregation of TiO2 nanoneedles and the Ostwald ripening process. Dye-sensitized solar cells (DSSCs) assembled by employing these complex rutile TiO2 microspheres as photoanodes exhibited a light-to-electricity conversion efficiency of 2.55%. It was further improved to a considerably high efficiency of 5.25% upon a series of post-treatments (i.e., calcination, TiCl4 treatment, and O2 plasma exposure) as a direct consequence of the well-crystallized TiO2 for fast electron transport, the enhanced capacity of dye loading, the effective light scattering, and trapping from microstructures.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom