z-logo
open-access-imgOpen Access
Synthesis, Morphology, and Sensory Applications of Multifunctional Rod–Coil–Coil Triblock Copolymers and Their Electrospun Nanofibers
Author(s) -
YuCheng Chiu,
Yougen Chen,
ChiChing Kuo,
ShihHuang Tung,
Toyoji Kakuchi,
WenChang Chen
Publication year - 2012
Publication title -
acs applied materials and interfaces
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.535
H-Index - 228
eISSN - 1944-8252
pISSN - 1944-8244
DOI - 10.1021/am300315v
Subject(s) - materials science , nanofiber , copolymer , morphology (biology) , electrospinning , electromagnetic coil , nanotechnology , chemical engineering , polymer science , composite material , polymer , engineering , biology , electrical engineering , genetics
We report the synthesis, morphology, and applications of conjugated rod-coil-coil triblock copolymers, polyfluorene-block-poly(N-isopropylacrylamide)-block-poly(N-methylolacrylamide) (PF-b-PNIPAAm-b-PNMA), prepared by atom transfer radical polymerization first and followed by click coupling reaction. The blocks of PF, PNIPAAm, and PNMA were designed for fluorescent probing, hydrophilic thermo-responsive and chemically cross-linking, respectively. In the following, the electrospun (ES) nanofibers of PF-b-PNIPAAm-b-PNMA were prepared in pure water using a single-capillary spinneret. The SAXS and TEM results suggested the lamellar structure of the PF-b-PNIPAAm-b-PNMA along the fiber axis. These obtained nanofibers showed outstanding wettability and dimension stability in the aqueous solution, and resulted in a reversible on/off transition on photoluminescence as the temperatures varied. Furthermore, the high surface/volume ratio of the ES nanofibers efficiently enhanced the temperature-sensitivity and responsive speed compared to those of the drop-cast film. The results indicated that the ES nanofibers of the conjugated rod-coil block copolymers would have potential applications for multifunctional sensory devices.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom