z-logo
open-access-imgOpen Access
Transparent Large-Strain Thermoplastic Polyurethane Magnetoactive Nanocomposites
Author(s) -
Mitra Yoonessi,
John A. Peck,
Justin L. Bail,
Richard B. Rogers,
Bradley A. Lerch,
Michael A. Meador
Publication year - 2011
Publication title -
acs applied materials and interfaces
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.535
H-Index - 228
eISSN - 1944-8252
pISSN - 1944-8244
DOI - 10.1021/am200468t
Subject(s) - materials science , thermoplastic polyurethane , nanocomposite , superparamagnetism , composite material , polyurethane , coercivity , elastomer , saturation (graph theory) , nanoparticle , magnetization , magnetic field , nanotechnology , physics , quantum mechanics , condensed matter physics , mathematics , combinatorics
Organically modified superparamagnetic MnFe(2)O(4)/thermoplastic polyurethane elastomer (TPU) nanocomposites (0.1-8 wt %) were prepared by solvent mixing followed by solution casting. Linear aliphatic alkyl chain modification of spherical MnFe(2)O(4) provided compatibility with the TPU containing a butanediol extended polyester polyol-MDI. All MnFe(2)O(4)/TPU nanocomposite films were superparamagnetic and their saturation magnetization, σ(s), increased with increasing MnFe(2)O(4) content. All nanocomposite films exhibited large deformations (>10 mm) under a magneto-static field. This is the first report of large actuation of magnetic nanoparticle nanocomposites at low-loading levels of 0.1 wt % (0.025 vol %). The maximum actuation deformation of the MnFe(2)O(4)/TPU nanocomposite films increased exponentially with increasing nanoparticle concentration. An empirical correlation between the maximum displacement, saturation magnetization, and magnetic nanoparticle loading is proposed. The cyclic deformation actuation of a 6 wt % surface modified MnFe(2)O(4)/TPU, in a low magnetic field 151 < B(y) < 303 Oe, exhibited excellent reproducibility and controllability. MnFe(2)O(4)/TPU nanocomposite films (0.1-2 wt %) were transparent and semitransparent over the wavelengths from 350 to 700 nm.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom