Nanosized Cation-Deficient Fe−Ti Spinel: A Novel Magnetic Sorbent for Elemental Mercury Capture from Flue Gas
Author(s) -
Shijian Yang,
Yongfu Guo,
Naiqiang Yan,
Daqing Wu,
Hongping He,
Zan Qu,
Chen Yang,
Qin Zhou,
Jinping Jia
Publication year - 2011
Publication title -
acs applied materials and interfaces
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.535
H-Index - 228
eISSN - 1944-8252
pISSN - 1944-8244
DOI - 10.1021/am100835c
Subject(s) - sorbent , materials science , flue gas , spinel , mercury (programming language) , elemental mercury , chemical engineering , inorganic chemistry , metallurgy , adsorption , waste management , chemistry , computer science , engineering , programming language
Nonstoichiometric Fe-Ti spinel (Fe(3-x)Ti(x))(1-δ)O(4) has a large amount of cation vacancies on the surface, which may provide active sites for pollutant adsorption. Meanwhile, its magnetic property makes it separable from the complex multiphase system for recycling, and for safe disposal of the adsorbed toxin. Therefore, (Fe(3-x)Ti(x))(1-δ)O(4) may be a promising sorbent in environmental applications. Herein, (Fe(3-x)Ti(x))(1-δ)O(4) is used as a magnetically separable sorbent for elemental mercury capture from the flue gas of coal-fired power plants. (Fe(2)Ti)(0.8)O(4) shows a moderate capacity (about 1.0 mg g(-1) at 250 °C) for elemental mercury capture in the presence of 1000 ppmv of SO(2). Meanwhile, the sorbent can be readily separated from the fly ash using magnetic separation, leaving the fly ash essentially free of sorbent and adsorbed mercury.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom